Skip to contents

Cost functions for the univariate Poission distribution

Details

Collective anomalies are represented as multiplicative changes in rate

Methods


Method length()

Get the length of time series

Usage

poisCost$length()


Method new()

Initialise the cost function

Usage

poisCost$new(x, rate = 1)

Arguments

x

numeric vector of observations

rate

numeric vector of rate parameters


Method baseCost()

Compute the non-anomalous cost of a segment

Usage

poisCost$baseCost(a, b, pen = 0)

Arguments

a

start of period

b

end of period

pen

penalty cost


Method pointCost()

Compute the point anomaly cost of a time step

Usage

poisCost$pointCost(b, pen)

Arguments

b

time step

pen

penalty cost


Method collectiveCost()

Compute the anomalous cost of a segment

Usage

poisCost$collectiveCost(a, b, pen, len)

Arguments

a

start of period

b

end of period

pen

penalty cost

len

minimum number of observations


Method param()

Compute parameters of a segment if anomalous

Usage

poisCost$param(a, b)

Arguments

a

start of period

b

end of period


Method clone()

The objects of this class are cloneable with this method.

Usage

poisCost$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

set.seed(0)
r <- 8 + runif(100)*2
x <- rpois(100,lambda = r)

p <- poisCost$new(x,r)
p$baseCost(90,95) ## cost of non-anomalous distribution for x[90:95]
#>     rate 
#> 29.90849 
p$pointCost(90,0) ## point anomaly cost for x[90] with 0 penalty
#>        x 
#> 4.415644 
## collective anomaly cost for x[90:95] with penalty of 57 and at least 3 observation
p$collectiveCost(90,95,57,3) 
#>     rate 
#> 86.33279