Skip to contents

The Purpose of this vignette is to outline the creation of a new cost function. In this example the cost function for a Normal distribution with potential chnges in mean is presented; the result being a simplified version of the gaussMean cost function.

A cost function is an R6 class with the following public methods

Method Inputs Returns
initialize Data series, default parameters for the background cost Initialised R6 object
baseCost start & end of the period, penalty The backgorund cost of a data period
pointCost time set, penalty The cost of a time step if it was a point anomaly
collectiveCost start & end of the period, penalty The cost of the period if it was a collective anomaly
length None The length of the data series
param start & end of the period The estimated parameters if the period was anomalous

The following commented code impliments these methods for the example distribution

library(R6)
newCost <- R6Class("newCost",
                   private = list(
                       x = NULL, ## storage for the input data
                       m = NULL, ## storage for the background mean
                       s = NULL ## storage for the background standard deviation
                   ),
                   public=list(
                       ## initialisation
                       initialize = function(x,m,s){
                           private$x <- as.numeric(x) ## convert and store data
                           private$m <- as.numeric(m) ## convert and store background mean
                           private$s <- as.numeric(s) ## convert and store background standard deviation
                           invisible(self) ## to allow chaining of methods
                       },
                       ## length of the data
                       length = function(){ length(private$x) },
                       ## compute the base cost
                       baseCost = function(a,b,pen=0){ ## start & end of period and penalty
                           -2*sum( dnorm(private$x[a:b],private$m,private$s,log=TRUE) ) + pen
                       },
                       ## cost of a point anomaly - change in mean
                       pointCost = function(a,pen){
                           ## change of mean in anomaly make new mean obseerved value
                           -2*dnorm(private$x[a],private$x[a],private$s,log=TRUE) + pen
                       },
                       ## cost of a collective anomaly
                       collectiveCost = function(a,b,pen,len){
                           if( b-a+1 < len ){return(NA)} ## catch short a segments and return NA by convention
                           ## change of mean in make new mean average of data
                           m_est <- mean(private$x[a:b])
                           -2*sum( dnorm(private$x[a:b],m_est,private$s,log=TRUE) ) + pen
                       },
                       ## estimate the new parameters
                       param = function(a,b){
                           ## the new parameter value is the change in mean
                           mean(x[a:b]) - private$m
                       }
                   )
                   )

We can test this against the included implimentation

library(anomalous)
data("Lai2005fig4")
y <- Lai2005fig4[, 5]

## set the the new cost function and matching internal implimentation
nC <- newCost$new(y,m=median(y),s=mad(y))
fC <- gaussMean$new(y,m=median(y),s=mad(y), point_type="mean")

capa_nC <- capa(partition(2*log(length(y)),2*log(length(y)),2),nC)
summary(capa_nC)
#>    start end       type      cost
#> 1      1  28 background 32.371108
#> 2     29  32 collective 14.346520
#> 3     33  53 background 29.309601
#> 4     54  54      point 11.010282
#> 5     55  81 background 35.087923
#> 6     82  85 collective 15.619015
#> 7     86  89 background  2.818136
#> 8     90  96 collective 22.069486
#> 9     97 123 background 36.743793
#> 10   124 124      point 11.010282
#> 11   125 125 background  9.874315
#> 12   126 133 collective 24.756257
#> 13   134 193 background 70.082216

capa_fC <- capa(partition(2*log(length(y)),2*log(length(y)),2),fC)
summary(capa_fC)
#>    start end       type      cost
#> 1      1  28 background 32.371108
#> 2     29  32 collective 14.346520
#> 3     33  53 background 29.309601
#> 4     54  54      point 11.010282
#> 5     55  81 background 35.087923
#> 6     82  85 collective 15.619015
#> 7     86  89 background  2.818136
#> 8     90  96 collective 22.069486
#> 9     97 123 background 36.743793
#> 10   124 124      point 11.010282
#> 11   125 125 background  9.874315
#> 12   126 133 collective 24.756257
#> 13   134 193 background 70.082216