Skip to contents

Cost functions for the multinomial distribution

Details

Collective anomalies are represented as chnages to the expected proportions. Time varying expected proportions are currently not handled.

Methods


Method length()

Get the length of time series

Usage

multinomialCost$length()


Method new()

Initialise the cost function

Usage

multinomialCost$new(x, m = rep(1/ncol(x), ncol(x)))

Arguments

x

integer matrix of observations

m

numeric vector of expected proportions


Method baseCost()

Compute the non-anomalous cost of a segment

Usage

multinomialCost$baseCost(a, b, pen = 0)

Arguments

a

start of period

b

end of period

pen

penalty cost


Method pointCost()

Compute the point anomaly cost of a time step

Usage

multinomialCost$pointCost(b, pen)

Arguments

b

time step

pen

penalty cost


Method collectiveCost()

Compute the anomalous cost of a segment

Usage

multinomialCost$collectiveCost(a, b, pen, len)

Arguments

a

start of period

b

end of period

pen

penalty cost

len

minimum number of observations


Method param()

Compute parameters of a segment if anomalous

Usage

multinomialCost$param(a, b)

Arguments

a

start of period

b

end of period


Method clone()

The objects of this class are cloneable with this method.

Usage

multinomialCost$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

set.seed(0)
m <- c(1:4)/sum(1:4)
X <- t(rmultinom(100, 144, m))

p <- multinomialCost$new(X,m)
p$baseCost(90,95) ## cost of non-anomalous distribution for x[90:95]
#> [1] 105.7273
p$pointCost(90,0) ## point anomaly cost for x[90] with 0 penalty
#> [1] 14.37387
## collective anomaly cost for x[90:95] with penalty of 57 and at least 3 observation
p$collectiveCost(90,95,57,3)
#> [1] 161.7761