The purpose of this vignette is to provide an outline of the steps needed to build a dynamic TOPMODEL implementation using the dynatopGIS package.
The dynatopGIS package implements a structured, object orientated,
data flow. The steps outlined below create a dynatopGIS
catchment object to which actions are then applied to generate a
model.
The dynatopGIS
package is written using the object
orientated framework provided by the R6
package. This means
that some aspects of working with the objects may appear idiosyncratic
for some R users. In using the package as outlined in this vignette
these problems are largely obscured, except for the call structure.
However, before adapting the code, or doing more complex analysis users
should read about R6
class objects (e.g. in the
R6
package vignettes or in the Advanced R book). One
particular gotcha is when copying an object. Using
my_new_object <- my_object
creates a pointer, that is altering my_new_object
also
alters my_object
. To create a new independent copy of
my_object
use
my_new_object <- my_object$clone()
The dynatopGIS packages works through a number of steps to generate a
Dynamic TOPMODEL object suitable for use in with the
dynatop
package. Each step generates one or more layers
which are saved as raster or shape files into the projects working
directory (which is not necessarily the R working directory). A record
of these layers is kept in the json format meta data file.
This vignette demonstrates the use of the dynatopGIS
package using data from the Swindale catchment in the UK.
To start first load the library
For this vignette we will store the data into a temporary directory
demo_dir <- tempfile("dygis")
dir.create(demo_dir)
and initialise the analysis by creating a new object specifying the location of the meta data file, which will be created if it doesn’t exist.
ctch <- dynatopGIS$new(file.path(demo_dir,"demo"))
#> Creating new folder
#> Starting new project at /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo
The basis of the analysis is a rasterised Digital Elevation Model
(DEM) of the catchment and a vectorised representation of the river
network with attributes. Currently these can be in any format supported
by the raster
and sp
libraries
respectively.
However, within the calculations used for sink filling, flow routing and topographic index calculations the raster DEM is presumed to be projected so that is has square cells such that the difference between the cell centres (in meters) does not alter.
For Swindale the suitable DEM and channel files can be found using:
dem_file <- system.file("extdata", "SwindaleDTM40m.tif", package="dynatopGIS", mustWork = TRUE)
channel_file <- system.file("extdata", "SwindaleRiverNetwork.shp", package="dynatopGIS", mustWork = TRUE)
Either the DEM or channel files can be added to the project first. In this case we add the DEM with
dem <- terra::rast(dem_file)
ctch$add_dem(dem)
Note: An additional row and column of NA
is
added to each edge of the DEM. All raster layers in the project have the
same projection, resolution and extent of the extended DEM.
Adding river channel data is more complex. The
add_channel
method requires a
SpatialPolygonsDataFrame
as generated by the
sp
package. Each entry in the data.frame is treated as a
length of river channel which requires the following properties
Additional properties are currently kept but ignored with the exception of id which is overwritten.
Since it is possible that these properties are present in a data file
under different names some basic preprocessing may be required. The
convert_channel
function is designed to help with this. To
illustrate this let us examine the river network for Swindale
sp_lines <- terra::vect(channel_file)
#> Warning: [vect] Z coordinates ignored
head(sp_lines)
#> class : SpatVector
#> geometry : lines
#> dimensions : 6, 11 (geometries, attributes)
#> extent : 349884.5, 351675.7, 508614.5, 513074.7 (xmin, xmax, ymin, ymax)
#> coord. ref. : OSGB36 / British National Grid (EPSG:27700)
#> names : name1 identifier startNode endNode
#> type : <chr> <chr> <chr> <chr>
#> values : Hawthorn Gill 16D0AC09-E0B6-~ 730F01D2-0F4F-~ 72B1A40B-E106-~
#> Little Mosedal~ 643017BB-01BC-~ 9B06188C-F4C7-~ A19E0D3A-2FA1-~
#> Mosedale Beck D2C2703E-A32F-~ B03DB3BD-0E33-~ D649B60C-E631-~
#> form flow fictitious length name2 sinkdepth Shape_Leng
#> <chr> <chr> <chr> <int> <chr> <num> <num>
#> inlandRiver in direction false 431 NA -1 431.3
#> inlandRiver in direction false 513 NA -1 513.1
#> inlandRiver in direction false 740 NA -1 739.8
Some of the main properties are present under appropriate names
(startNode, endNode, length) but the remainder are missing. Also the
river network is defined as a series of lines, rather then polygons. The
convert_channel
function addresses these shortcomings by -
changing the names of the required properties - buffering the line
objects to create polygons
The convert_channel
function takes a named vector giving
the variable names to be use for the properties. If we want to carry
over the identifier as the name we could call
convert_channel
with as follows:
property_names <- c(name="identifier",
endNode="endNode",
startNode="startNode",
length="length")
chn <- convert_channel(sp_lines,property_names)
#> Warning in convert_channel(sp_lines, property_names): Modifying to spatial
#> polygons using default width
Since the data set for Swindale does not contain a channel width the default width of 2m is used for buffering.
The river network can then be added to the project by
ctch$add_channel(chn)
The dynatopGIS
class has methods for returning and
plotting the GIS data in the project. The names of all the different GIS
layers stored is returned by
ctch$get_layer()
#> layer source
#> 1 dem /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/dem.tif
#> 2 channel /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/channel.tif
These can be plotted (with or without the channel), for example
ctch$plot_layer("dem", add_channel=TRUE)
or returned, for example
ctch$get_layer("dem")
#> class : SpatRaster
#> dimensions : 163, 124, 1 (nrow, ncol, nlyr)
#> resolution : 40, 40 (x, y)
#> extent : 347734, 352694, 507244, 513764 (xmin, xmax, ymin, ymax)
#> coord. ref. : +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +units=m +no_defs
#> source : dem.tif
#> name : dem
#> min value : 262.8004
#> max value : 710.7533
All layers are returned as RasterLayer
objects with the
exception of the channel
layer which is returned as a
SpatialPolygonsDataFrame
object.
For the hill slope to be connected to the river network all DEM cells must drain to those that intersect with the river network.
The algorithm of implemented in the sink_fill
method
ensures this is the case. Since the algorithm is iterative the execution
time of the function is limited by capping the maximum number of
iterations. If this limit is reached without completion the method can
call again with the “hot start” option to continue from where it
finished.
For Swindale, where the example DEM is already partially filled the algorithm only alters a small area near the foot of the catchment.
ctch$sink_fill()
terra::plot( ctch$get_layer('filled_dem') - ctch$get_layer('dem'),
main="Changes to height")
Two sets of properties are required for Dynamic TOPMODEL. The first set is those required within the evaluation of the model; gradient and contour length. The second set are those used for dividing the catchment up into Hydrological Response Units (HRUs). Traditionally the summary used for the separation of the HRUs is the topographic index, which is the natural logarithm of the upslope area divided by gradient.
These are computed using the formulae in Quinn et al. 1991.
The upstream area is computed by routing down slope with the fraction of the area being routed to the next downstream pixel being proportional to the gradient times the contour length.
The local value of the gradient is computed using the average of a subset of between pixel gradients. For a normal ‘hill slope’ cell these are the gradients to downslope pixels weighted by contour length. In the case of pixels which contain river channels the average of the gradients from upslope pixels weighted by contour length us used.
These properties are computed in an algorithm that passes over the data once in descending height. It is called as follows
ctch$compute_properties()
The plot of the topographic index shows a pattern of increasing values closer to the river channels
## plot of topographic index (log(a/tan b))
ctch$plot_layer('atb')
Properties may come in additional GIS layers. To demonstrate the addition of an additional layer we will extract the filled dem
tmp <- ctch$get_layer("filled_dem")
then separate it into a layers representing land above and below 500m.
The resulting raster object can now be added to the project with
ctch$add_layer(tmp, "greater_500")
ctch$get_layer()
#> layer source
#> 1 dem /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/dem.tif
#> 2 channel /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/channel.tif
#> 3 filled_dem /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/filled_dem.tif
#> 4 gradient /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/gradient.tif
#> 5 upslope_area /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/upslope_area.tif
#> 6 atb /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/atb.tif
#> 7 greater_500 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/greater_500.tif
Since dynatop
simulations make use of ordered HRUs to
work downslope, a metric is required to order the downslope sequencing.
The calculation of four such metrics is supported
The computation is initiated with
ctch$compute_flow_lengths()
#> Warning in .getSpatDF(x@ptr$df): NAs introduced by coercion to integer range
#> Warning in .getSpatDF(x@ptr$df, ...): NAs introduced by coercion to integer
#> range
The additional layers can be examined as expected
ctch$get_layer()
#> layer
#> 1 dem
#> 2 channel
#> 3 filled_dem
#> 4 gradient
#> 5 upslope_area
#> 6 atb
#> 7 greater_500
#> 8 band
#> 9 shortest_flow_length
#> 10 dominant_flow_length
#> 11 expected_flow_length
#> source
#> 1 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/dem.tif
#> 2 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/channel.tif
#> 3 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/filled_dem.tif
#> 4 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/gradient.tif
#> 5 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/upslope_area.tif
#> 6 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/atb.tif
#> 7 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/greater_500.tif
#> 8 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/band.tif
#> 9 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/shortest_flow_length.tif
#> 10 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/dominant_flow_length.tif
#> 11 /tmp/RtmpFb8DWA/dygis1eee4e2b5813/demo/expected_flow_length.tif
ctch$plot_layer("band")
Methods are provided for the classification of the catchment areas of
similar hydrological response. The classifications generated in this
process are augmented with a further distance based separation when
generating a dynatop
model (see following section).
By definition each channel length is treated as belonging to a single class.
To classify the hillslope two methods can be used.
The classify
method of a dynatopGIS
allows
a landscape property to be cut into classes.
For example to cut the topographic index for Swindale into 21 classes:
ctch$classify("atb_20","atb",cuts=20)
ctch$plot_layer("atb_20")
Providing a single value to the cuts argument determines the number of classes. The values used to cut the variable can be extracted from the meta data with
ctch$get_method("atb_20")
#> $type
#> [1] "classification"
#>
#> $layer
#> [1] "atb"
#>
#> $cuts
#> [1] 8.6361 9.3714 10.1066 10.8418 11.5771 12.3123 13.0476 13.7828 14.5181
#> [10] 15.2533 15.9885 16.7238 17.4590 18.1943 18.9295 19.6647 20.4000 21.1352
#> [19] 21.8705 22.6057 23.3410
The combine_classes
method of a dynatopGIS
allows classes to be combined in two ways, which are applied in the
order shown
To demonstrate a pairing combination consider combining the atb classes generated above with the classification provided by the distance band
ctch$combine_classes("atb_20_band",c("atb_20","band"))
ctch$plot_layer("atb_20_band")
Additionally the land greater then 500 in altitude can be burnt in with
ctch$combine_classes("atb_20_band_500",pairs=c("atb_20","band"),burns="greater_500")
ctch$plot_layer("atb_20_band_500")
The each class in the combined classification the values of the classes used in the computations can be returned
head( ctch$get_method("atb_20_band_500") )
#> $type
#> [1] "combination"
#>
#> $groups
#> atb_20_band_500 atb_20 band burns
#> 1 1 3 194 TRUE
#> 2 2 4 3 FALSE
#> 3 3 6 2 FALSE
#> 4 4 5 3 FALSE
#> 5 5 6 3 FALSE
#> 6 6 5 4 FALSE
#> 7 7 3 6 FALSE
#> 8 8 1 8 FALSE
#> 9 9 5 5 FALSE
#> 10 10 4 6 FALSE
#> 11 11 3 7 FALSE
#> 12 12 2 8 FALSE
#> 13 13 6 5 FALSE
#> 14 14 5 6 FALSE
#> 15 15 4 7 FALSE
#> 16 16 3 8 FALSE
#> 17 17 9 3 FALSE
#> 18 18 8 4 FALSE
#> 19 19 7 5 FALSE
#> 20 20 6 6 FALSE
#> 21 21 5 7 FALSE
#> 22 22 4 8 FALSE
#> 23 23 3 9 FALSE
#> 24 24 2 10 FALSE
#> 25 25 10 3 FALSE
#> 26 26 9 4 FALSE
#> 27 27 8 5 FALSE
#> 28 28 7 6 FALSE
#> 29 29 6 7 FALSE
#> 30 30 5 8 FALSE
#> 31 31 4 9 FALSE
#> 32 32 3 10 FALSE
#> 33 33 2 11 FALSE
#> 34 34 1 12 FALSE
#> 35 35 12 2 FALSE
#> 36 36 9 5 FALSE
#> 37 37 8 6 FALSE
#> 38 38 7 7 FALSE
#> 39 39 6 8 FALSE
#> 40 40 5 9 FALSE
#> 41 41 4 10 FALSE
#> 42 42 3 11 FALSE
#> 43 43 2 12 FALSE
#> 44 44 1 13 FALSE
#> 45 45 9 6 FALSE
#> 46 46 8 7 FALSE
#> 47 47 7 8 FALSE
#> 48 48 6 9 FALSE
#> 49 49 5 10 FALSE
#> 50 50 4 11 FALSE
#> 51 51 3 12 FALSE
#> 52 52 9 7 FALSE
#> 53 53 8 8 FALSE
#> 54 54 7 9 FALSE
#> 55 55 6 10 FALSE
#> 56 56 5 11 FALSE
#> 57 57 4 12 FALSE
#> 58 58 3 13 FALSE
#> 59 59 2 14 FALSE
#> 60 60 1 15 FALSE
#> 61 61 11 6 FALSE
#> 62 62 9 8 FALSE
#> 63 63 8 9 FALSE
#> 64 64 7 10 FALSE
#> 65 65 6 11 FALSE
#> 66 66 5 12 FALSE
#> 67 67 4 13 FALSE
#> 68 68 3 14 FALSE
#> 69 69 2 15 FALSE
#> 70 70 12 6 FALSE
#> 71 71 11 7 FALSE
#> 72 72 10 8 FALSE
#> 73 73 9 9 FALSE
#> 74 74 8 10 FALSE
#> 75 75 7 11 FALSE
#> 76 76 6 12 FALSE
#> 77 77 5 13 FALSE
#> 78 78 4 14 FALSE
#> 79 79 3 15 FALSE
#> 80 80 2 16 FALSE
#> 81 81 15 4 FALSE
#> 82 82 13 6 FALSE
#> 83 83 11 8 FALSE
#> 84 84 10 9 FALSE
#> 85 85 9 10 FALSE
#> 86 86 8 11 FALSE
#> 87 87 7 12 FALSE
#> 88 88 6 13 FALSE
#> 89 89 5 14 FALSE
#> 90 90 4 15 FALSE
#> 91 91 3 16 FALSE
#> 92 92 2 17 FALSE
#> 93 93 1 18 FALSE
#> 94 94 15 5 FALSE
#> 95 95 14 6 FALSE
#> 96 96 13 7 FALSE
#> 97 97 12 8 FALSE
#> 98 98 11 9 FALSE
#> 99 99 10 10 FALSE
#> 100 100 9 11 FALSE
#> 101 101 8 12 FALSE
#> 102 102 7 13 FALSE
#> 103 103 6 14 FALSE
#> 104 104 5 15 FALSE
#> 105 105 4 16 FALSE
#> 106 106 3 17 FALSE
#> 107 107 2 18 FALSE
#> 108 108 16 5 FALSE
#> 109 109 14 7 FALSE
#> 110 110 12 9 FALSE
#> 111 111 11 10 FALSE
#> 112 112 10 11 FALSE
#> 113 113 9 12 FALSE
#> 114 114 8 13 FALSE
#> 115 115 7 14 FALSE
#> 116 116 6 15 FALSE
#> 117 117 5 16 FALSE
#> 118 118 4 17 FALSE
#> 119 119 3 18 FALSE
#> 120 120 2 19 FALSE
#> 121 121 1 20 FALSE
#> 122 122 19 3 FALSE
#> 123 123 13 9 FALSE
#> 124 124 12 10 FALSE
#> 125 125 11 11 FALSE
#> 126 126 10 12 FALSE
#> 127 127 9 13 FALSE
#> 128 128 8 14 FALSE
#> 129 129 7 15 FALSE
#> 130 130 6 16 FALSE
#> 131 131 5 17 FALSE
#> 132 132 4 18 FALSE
#> 133 133 3 19 FALSE
#> 134 134 2 20 FALSE
#> 135 135 1 21 FALSE
#> 136 136 14 9 FALSE
#> 137 137 13 10 FALSE
#> 138 138 10 13 FALSE
#> 139 139 9 14 FALSE
#> 140 140 8 15 FALSE
#> 141 141 7 16 FALSE
#> 142 142 6 17 FALSE
#> 143 143 5 18 FALSE
#> 144 144 4 19 FALSE
#> 145 145 3 20 FALSE
#> 146 146 2 21 FALSE
#> 147 147 17 7 FALSE
#> 148 148 14 10 FALSE
#> 149 149 12 12 FALSE
#> 150 150 11 13 FALSE
#> 151 151 9 15 FALSE
#> 152 152 8 16 FALSE
#> 153 153 7 17 FALSE
#> 154 154 6 18 FALSE
#> 155 155 5 19 FALSE
#> 156 156 4 20 FALSE
#> 157 157 3 21 FALSE
#> 158 158 2 22 FALSE
#> 159 159 17 8 FALSE
#> 160 160 14 11 FALSE
#> 161 161 11 14 FALSE
#> 162 162 10 15 FALSE
#> 163 163 9 16 FALSE
#> 164 164 8 17 FALSE
#> 165 165 7 18 FALSE
#> 166 166 6 19 FALSE
#> 167 167 5 20 FALSE
#> 168 168 4 21 FALSE
#> 169 169 3 22 FALSE
#> 170 170 2 23 FALSE
#> 171 171 1 24 FALSE
#> 172 172 13 13 FALSE
#> 173 173 12 14 FALSE
#> 174 174 11 15 FALSE
#> 175 175 10 16 FALSE
#> 176 176 9 17 FALSE
#> 177 177 8 18 FALSE
#> 178 178 7 19 FALSE
#> 179 179 6 20 FALSE
#> 180 180 5 21 FALSE
#> 181 181 4 22 FALSE
#> 182 182 3 23 FALSE
#> 183 183 2 24 FALSE
#> 184 184 1 25 FALSE
#> 185 185 19 8 FALSE
#> 186 186 14 13 FALSE
#> 187 187 13 14 FALSE
#> 188 188 12 15 FALSE
#> 189 189 11 16 FALSE
#> 190 190 10 17 FALSE
#> 191 191 9 18 FALSE
#> 192 192 8 19 FALSE
#> 193 193 7 20 FALSE
#> 194 194 6 21 FALSE
#> 195 195 5 22 FALSE
#> 196 196 4 23 FALSE
#> 197 197 3 24 FALSE
#> 198 198 2 25 FALSE
#> 199 199 1 26 FALSE
#> 200 200 11 17 FALSE
#> 201 201 10 18 FALSE
#> 202 202 9 19 FALSE
#> 203 203 8 20 FALSE
#> 204 204 7 21 FALSE
#> 205 205 6 22 FALSE
#> 206 206 5 23 FALSE
#> 207 207 4 24 FALSE
#> 208 208 3 25 FALSE
#> 209 209 2 26 FALSE
#> 210 210 1 27 FALSE
#> 211 211 11 18 FALSE
#> 212 212 10 19 FALSE
#> 213 213 9 20 FALSE
#> 214 214 8 21 FALSE
#> 215 215 7 22 FALSE
#> 216 216 6 23 FALSE
#> 217 217 5 24 FALSE
#> 218 218 4 25 FALSE
#> 219 219 3 26 FALSE
#> 220 220 2 27 FALSE
#> 221 221 1 28 FALSE
#> 222 222 0 29 FALSE
#> 223 223 11 19 FALSE
#> 224 224 10 20 FALSE
#> 225 225 9 21 FALSE
#> 226 226 8 22 FALSE
#> 227 227 7 23 FALSE
#> 228 228 6 24 FALSE
#> 229 229 5 25 FALSE
#> 230 230 4 26 FALSE
#> 231 231 3 27 FALSE
#> 232 232 2 28 FALSE
#> 233 233 1 29 FALSE
#> 234 234 0 30 FALSE
#> 235 235 10 21 FALSE
#> 236 236 9 22 FALSE
#> 237 237 8 23 FALSE
#> 238 238 7 24 FALSE
#> 239 239 6 25 FALSE
#> 240 240 5 26 FALSE
#> 241 241 4 27 FALSE
#> 242 242 3 28 FALSE
#> 243 243 2 29 FALSE
#> 244 244 1 30 FALSE
#> 245 245 0 31 FALSE
#> 246 246 10 22 FALSE
#> 247 247 8 24 FALSE
#> 248 248 7 25 FALSE
#> 249 249 6 26 FALSE
#> 250 250 5 27 FALSE
#> 251 251 4 28 FALSE
#> 252 252 3 29 FALSE
#> 253 253 2 30 FALSE
#> 254 254 1 31 FALSE
#> 255 255 0 32 FALSE
#> 256 256 11 22 FALSE
#> 257 257 9 24 FALSE
#> 258 258 8 25 FALSE
#> 259 259 7 26 FALSE
#> 260 260 6 27 FALSE
#> 261 261 5 28 FALSE
#> 262 262 4 29 FALSE
#> 263 263 3 30 FALSE
#> 264 264 2 31 FALSE
#> 265 265 1 32 FALSE
#> 266 266 0 33 FALSE
#> 267 267 11 23 FALSE
#> 268 268 10 24 FALSE
#> 269 269 8 26 FALSE
#> 270 270 7 27 FALSE
#> 271 271 6 28 FALSE
#> 272 272 5 29 FALSE
#> 273 273 4 30 FALSE
#> 274 274 3 31 FALSE
#> 275 275 2 32 FALSE
#> 276 276 1 33 FALSE
#> 277 277 0 34 FALSE
#> 278 278 11 24 FALSE
#> 279 279 8 27 FALSE
#> 280 280 7 28 FALSE
#> 281 281 6 29 FALSE
#> 282 282 5 30 FALSE
#> 283 283 4 31 FALSE
#> 284 284 3 32 FALSE
#> 285 285 2 33 FALSE
#> 286 286 1 34 FALSE
#> 287 287 0 35 FALSE
#> 288 288 10 26 FALSE
#> 289 289 8 28 FALSE
#> 290 290 7 29 FALSE
#> 291 291 6 30 FALSE
#> 292 292 5 31 FALSE
#> 293 293 4 32 FALSE
#> 294 294 3 33 FALSE
#> 295 295 2 34 FALSE
#> 296 296 1 35 FALSE
#> 297 297 0 36 FALSE
#> 298 298 12 25 FALSE
#> 299 299 10 27 FALSE
#> 300 300 9 28 FALSE
#> 301 301 8 29 FALSE
#> 302 302 7 30 FALSE
#> 303 303 6 31 FALSE
#> 304 304 5 32 FALSE
#> 305 305 4 33 FALSE
#> 306 306 3 34 FALSE
#> 307 307 2 35 FALSE
#> 308 308 1 36 FALSE
#> 309 309 0 37 FALSE
#> 310 310 11 27 FALSE
#> 311 311 10 28 FALSE
#> 312 312 9 29 FALSE
#> 313 313 8 30 FALSE
#> 314 314 7 31 FALSE
#> 315 315 6 32 FALSE
#> 316 316 5 33 FALSE
#> 317 317 4 34 FALSE
#> 318 318 3 35 FALSE
#> 319 319 2 36 FALSE
#> 320 320 1 37 FALSE
#> 321 321 0 38 FALSE
#> 322 322 11 28 FALSE
#> 323 323 10 29 FALSE
#> 324 324 9 30 FALSE
#> 325 325 7 32 FALSE
#> 326 326 6 33 FALSE
#> 327 327 5 34 FALSE
#> 328 328 4 35 FALSE
#> 329 329 3 36 FALSE
#> 330 330 2 37 FALSE
#> 331 331 1 38 FALSE
#> 332 332 0 39 FALSE
#> 333 333 9 31 FALSE
#> 334 334 8 32 FALSE
#> 335 335 6 34 FALSE
#> 336 336 5 35 FALSE
#> 337 337 4 36 FALSE
#> 338 338 3 37 FALSE
#> 339 339 2 38 FALSE
#> 340 340 1 39 FALSE
#> 341 341 0 40 FALSE
#> 342 342 10 31 FALSE
#> 343 343 9 32 FALSE
#> 344 344 8 33 FALSE
#> 345 345 7 34 FALSE
#> 346 346 6 35 FALSE
#> 347 347 5 36 FALSE
#> 348 348 4 37 FALSE
#> 349 349 3 38 FALSE
#> 350 350 2 39 FALSE
#> 351 351 1 40 FALSE
#> 352 352 0 41 FALSE
#> 353 353 9 33 FALSE
#> 354 354 8 34 FALSE
#> 355 355 7 35 FALSE
#> 356 356 6 36 FALSE
#> 357 357 5 37 FALSE
#> 358 358 4 38 FALSE
#> 359 359 3 39 FALSE
#> 360 360 2 40 FALSE
#> 361 361 1 41 FALSE
#> 362 362 0 42 FALSE
#> 363 363 10 33 FALSE
#> 364 364 9 34 FALSE
#> 365 365 8 35 FALSE
#> 366 366 7 36 FALSE
#> 367 367 6 37 FALSE
#> 368 368 5 38 FALSE
#> 369 369 4 39 FALSE
#> 370 370 3 40 FALSE
#> 371 371 2 41 FALSE
#> 372 372 1 42 FALSE
#> 373 373 0 43 FALSE
#> 374 374 11 33 FALSE
#> 375 375 9 35 FALSE
#> 376 376 7 37 FALSE
#> 377 377 6 38 FALSE
#> 378 378 5 39 FALSE
#> 379 379 4 40 FALSE
#> 380 380 3 41 FALSE
#> 381 381 2 42 FALSE
#> 382 382 1 43 FALSE
#> 383 383 0 44 FALSE
#> 384 384 10 35 FALSE
#> 385 385 6 39 FALSE
#> 386 386 5 40 FALSE
#> 387 387 4 41 FALSE
#> 388 388 3 42 FALSE
#> 389 389 2 43 FALSE
#> 390 390 1 44 FALSE
#> 391 391 0 45 FALSE
#> 392 392 9 37 FALSE
#> 393 393 7 39 FALSE
#> 394 394 6 40 FALSE
#> 395 395 5 41 FALSE
#> 396 396 4 42 FALSE
#> 397 397 3 43 FALSE
#> 398 398 2 44 FALSE
#> 399 399 1 45 FALSE
#> 400 400 0 46 FALSE
#> 401 401 10 37 FALSE
#> 402 402 9 38 FALSE
#> 403 403 8 39 FALSE
#> 404 404 7 40 FALSE
#> 405 405 6 41 FALSE
#> 406 406 5 42 FALSE
#> 407 407 4 43 FALSE
#> 408 408 3 44 FALSE
#> 409 409 2 45 FALSE
#> 410 410 1 46 FALSE
#> 411 411 8 40 FALSE
#> 412 412 6 42 FALSE
#> 413 413 5 43 FALSE
#> 414 414 4 44 FALSE
#> 415 415 3 45 FALSE
#> 416 416 2 46 FALSE
#> 417 417 1 47 FALSE
#> 418 418 0 48 FALSE
#> 419 419 13 36 FALSE
#> 420 420 9 40 FALSE
#> 421 421 8 41 FALSE
#> 422 422 7 42 FALSE
#> 423 423 6 43 FALSE
#> 424 424 5 44 FALSE
#> 425 425 4 45 FALSE
#> 426 426 3 46 FALSE
#> 427 427 2 47 FALSE
#> 428 428 1 48 FALSE
#> 429 429 8 42 FALSE
#> 430 430 7 43 FALSE
#> 431 431 6 44 FALSE
#> 432 432 5 45 FALSE
#> 433 433 4 46 FALSE
#> 434 434 3 47 FALSE
#> 435 435 2 48 FALSE
#> 436 436 1 49 FALSE
#> 437 437 0 50 FALSE
#> 438 438 10 41 FALSE
#> 439 439 9 42 FALSE
#> 440 440 8 43 FALSE
#> 441 441 7 44 FALSE
#> 442 442 6 45 FALSE
#> 443 443 5 46 FALSE
#> 444 444 4 47 FALSE
#> 445 445 3 48 FALSE
#> 446 446 2 49 FALSE
#> 447 447 1 50 FALSE
#> 448 448 0 51 FALSE
#> 449 449 8 44 FALSE
#> 450 450 7 45 FALSE
#> 451 451 6 46 FALSE
#> 452 452 5 47 FALSE
#> 453 453 4 48 FALSE
#> 454 454 3 49 FALSE
#> 455 455 2 50 FALSE
#> 456 456 1 51 FALSE
#> 457 457 0 52 FALSE
#> 458 458 9 44 FALSE
#> 459 459 8 45 FALSE
#> 460 460 7 46 FALSE
#> 461 461 6 47 FALSE
#> 462 462 5 48 FALSE
#> 463 463 4 49 FALSE
#> 464 464 3 50 FALSE
#> 465 465 2 51 FALSE
#> 466 466 1 52 FALSE
#> 467 467 0 53 FALSE
#> 468 468 11 43 FALSE
#> 469 469 9 45 FALSE
#> 470 470 8 46 FALSE
#> 471 471 7 47 FALSE
#> 472 472 6 48 FALSE
#> 473 473 5 49 FALSE
#> 474 474 4 50 FALSE
#> 475 475 3 51 FALSE
#> 476 476 2 52 FALSE
#> 477 477 1 53 FALSE
#> 478 478 0 54 FALSE
#> 479 479 11 44 FALSE
#> 480 480 8 47 FALSE
#> 481 481 7 48 FALSE
#> 482 482 6 49 FALSE
#> 483 483 5 50 FALSE
#> 484 484 4 51 FALSE
#> 485 485 3 52 FALSE
#> 486 486 2 53 FALSE
#> 487 487 1 54 FALSE
#> 488 488 0 55 FALSE
#> 489 489 10 46 FALSE
#> 490 490 9 47 FALSE
#> 491 491 8 48 FALSE
#> 492 492 7 49 FALSE
#> 493 493 6 50 FALSE
#> 494 494 5 51 FALSE
#> 495 495 4 52 FALSE
#> 496 496 3 53 FALSE
#> 497 497 2 54 FALSE
#> 498 498 1 55 FALSE
#> 499 499 0 56 FALSE
#> 500 500 9 48 FALSE
#> 501 501 8 49 FALSE
#> 502 502 7 50 FALSE
#> 503 503 6 51 FALSE
#> 504 504 5 52 FALSE
#> 505 505 4 53 FALSE
#> 506 506 3 54 FALSE
#> 507 507 2 55 FALSE
#> 508 508 1 56 FALSE
#> 509 509 0 57 FALSE
#> 510 510 12 46 FALSE
#> 511 511 7 51 FALSE
#> 512 512 6 52 FALSE
#> 513 513 5 53 FALSE
#> 514 514 4 54 FALSE
#> 515 515 3 55 FALSE
#> 516 516 2 56 FALSE
#> 517 517 1 57 FALSE
#> 518 518 11 48 FALSE
#> 519 519 9 50 FALSE
#> 520 520 8 51 FALSE
#> 521 521 7 52 FALSE
#> 522 522 6 53 FALSE
#> 523 523 5 54 FALSE
#> 524 524 4 55 FALSE
#> 525 525 3 56 FALSE
#> 526 526 2 57 FALSE
#> 527 527 1 58 FALSE
#> 528 528 10 50 FALSE
#> 529 529 9 51 FALSE
#> 530 530 8 52 FALSE
#> 531 531 7 53 FALSE
#> 532 532 6 54 FALSE
#> 533 533 5 55 FALSE
#> 534 534 4 56 FALSE
#> 535 535 3 57 FALSE
#> 536 536 2 58 FALSE
#> 537 537 1 59 FALSE
#> 538 538 0 60 FALSE
#> 539 539 10 51 FALSE
#> 540 540 9 52 FALSE
#> 541 541 8 53 FALSE
#> 542 542 7 54 FALSE
#> 543 543 6 55 FALSE
#> 544 544 5 56 FALSE
#> 545 545 4 57 FALSE
#> 546 546 3 58 FALSE
#> 547 547 2 59 FALSE
#> 548 548 1 60 FALSE
#> 549 549 9 53 FALSE
#> 550 550 8 54 FALSE
#> 551 551 7 55 FALSE
#> 552 552 6 56 FALSE
#> 553 553 5 57 FALSE
#> 554 554 4 58 FALSE
#> 555 555 3 59 FALSE
#> 556 556 2 60 FALSE
#> 557 557 1 61 FALSE
#> 558 558 8 55 FALSE
#> 559 559 7 56 FALSE
#> 560 560 6 57 FALSE
#> 561 561 5 58 FALSE
#> 562 562 4 59 FALSE
#> 563 563 3 60 FALSE
#> 564 564 2 61 FALSE
#> 565 565 1 62 FALSE
#> 566 566 10 54 FALSE
#> 567 567 9 55 FALSE
#> 568 568 8 56 FALSE
#> 569 569 6 58 FALSE
#> 570 570 5 59 FALSE
#> 571 571 4 60 FALSE
#> 572 572 3 61 FALSE
#> 573 573 2 62 FALSE
#> 574 574 1 63 FALSE
#> 575 575 0 64 FALSE
#> 576 576 9 56 FALSE
#> 577 577 8 57 FALSE
#> 578 578 7 58 FALSE
#> 579 579 6 59 FALSE
#> 580 580 5 60 FALSE
#> 581 581 4 61 FALSE
#> 582 582 3 62 FALSE
#> 583 583 2 63 FALSE
#> 584 584 1 64 FALSE
#> 585 585 6 60 FALSE
#> 586 586 5 61 FALSE
#> 587 587 4 62 FALSE
#> 588 588 3 63 FALSE
#> 589 589 2 64 FALSE
#> 590 590 1 65 FALSE
#> 591 591 0 66 FALSE
#> 592 592 10 57 FALSE
#> 593 593 7 60 FALSE
#> 594 594 6 61 FALSE
#> 595 595 5 62 FALSE
#> 596 596 4 63 FALSE
#> 597 597 3 64 FALSE
#> 598 598 2 65 FALSE
#> 599 599 1 66 FALSE
#> 600 600 0 67 FALSE
#> 601 601 10 58 FALSE
#> 602 602 9 59 FALSE
#> 603 603 8 60 FALSE
#> 604 604 6 62 FALSE
#> 605 605 5 63 FALSE
#> 606 606 4 64 FALSE
#> 607 607 3 65 FALSE
#> 608 608 2 66 FALSE
#> 609 609 1 67 FALSE
#> 610 610 0 68 FALSE
#> 611 611 10 59 FALSE
#> 612 612 9 60 FALSE
#> 613 613 8 61 FALSE
#> 614 614 7 62 FALSE
#> 615 615 6 63 FALSE
#> 616 616 5 64 FALSE
#> 617 617 4 65 FALSE
#> 618 618 3 66 FALSE
#> 619 619 2 67 FALSE
#> 620 620 1 68 FALSE
#> 621 621 11 59 FALSE
#> 622 622 9 61 FALSE
#> 623 623 8 62 FALSE
#> 624 624 6 64 FALSE
#> 625 625 5 65 FALSE
#> 626 626 4 66 FALSE
#> 627 627 3 67 FALSE
#> 628 628 2 68 FALSE
#> 629 629 1 69 FALSE
#> 630 630 6 65 FALSE
#> 631 631 5 66 FALSE
#> 632 632 4 67 FALSE
#> 633 633 3 68 FALSE
#> 634 634 2 69 FALSE
#> 635 635 1 70 FALSE
#> 636 636 0 71 FALSE
#> 637 637 10 62 FALSE
#> 638 638 9 63 FALSE
#> 639 639 7 65 FALSE
#> 640 640 6 66 FALSE
#> 641 641 5 67 FALSE
#> 642 642 4 68 FALSE
#> 643 643 3 69 FALSE
#> 644 644 2 70 FALSE
#> 645 645 1 71 FALSE
#> 646 646 10 63 FALSE
#> 647 647 9 64 FALSE
#> 648 648 8 65 FALSE
#> 649 649 7 66 FALSE
#> 650 650 6 67 FALSE
#> 651 651 5 68 FALSE
#> 652 652 4 69 FALSE
#> 653 653 3 70 FALSE
#> 654 654 2 71 FALSE
#> 655 655 1 72 FALSE
#> 656 656 13 61 FALSE
#> 657 657 10 64 FALSE
#> 658 658 8 66 FALSE
#> 659 659 6 68 FALSE
#> 660 660 5 69 FALSE
#> 661 661 4 70 FALSE
#> 662 662 3 71 FALSE
#> 663 663 2 72 FALSE
#> 664 664 1 73 FALSE
#> 665 665 9 66 FALSE
#> 666 666 6 69 FALSE
#> 667 667 5 70 FALSE
#> 668 668 4 71 FALSE
#> 669 669 3 72 FALSE
#> 670 670 2 73 FALSE
#> 671 671 1 74 FALSE
#> 672 672 6 70 FALSE
#> 673 673 5 71 FALSE
#> 674 674 4 72 FALSE
#> 675 675 3 73 FALSE
#> 676 676 2 74 FALSE
#> 677 677 1 75 FALSE
#> 678 678 11 66 FALSE
#> 679 679 10 67 FALSE
#> 680 680 9 68 FALSE
#> 681 681 6 71 FALSE
#> 682 682 5 72 FALSE
#> 683 683 4 73 FALSE
#> 684 684 3 74 FALSE
#> 685 685 2 75 FALSE
#> 686 686 1 76 FALSE
#> 687 687 9 69 FALSE
#> 688 688 6 72 FALSE
#> 689 689 5 73 FALSE
#> 690 690 4 74 FALSE
#> 691 691 3 75 FALSE
#> 692 692 2 76 FALSE
#> 693 693 7 72 FALSE
#> 694 694 6 73 FALSE
#> 695 695 5 74 FALSE
#> 696 696 4 75 FALSE
#> 697 697 3 76 FALSE
#> 698 698 2 77 FALSE
#> 699 699 1 78 FALSE
#> 700 700 0 79 FALSE
#> 701 701 8 72 FALSE
#> 702 702 7 73 FALSE
#> 703 703 6 74 FALSE
#> 704 704 5 75 FALSE
#> 705 705 4 76 FALSE
#> 706 706 3 77 FALSE
#> 707 707 2 78 FALSE
#> 708 708 13 68 FALSE
#> 709 709 11 70 FALSE
#> 710 710 7 74 FALSE
#> 711 711 6 75 FALSE
#> 712 712 5 76 FALSE
#> 713 713 4 77 FALSE
#> 714 714 3 78 FALSE
#> 715 715 2 79 FALSE
#> 716 716 1 80 FALSE
#> 717 717 11 71 FALSE
#> 718 718 9 73 FALSE
#> 719 719 6 76 FALSE
#> 720 720 5 77 FALSE
#> 721 721 4 78 FALSE
#> 722 722 3 79 FALSE
#> 723 723 2 80 FALSE
#> 724 724 9 74 FALSE
#> 725 725 7 76 FALSE
#> 726 726 6 77 FALSE
#> 727 727 5 78 FALSE
#> 728 728 4 79 FALSE
#> 729 729 3 80 FALSE
#> 730 730 2 81 FALSE
#> 731 731 11 73 FALSE
#> 732 732 7 77 FALSE
#> 733 733 6 78 FALSE
#> 734 734 5 79 FALSE
#> 735 735 4 80 FALSE
#> 736 736 3 81 FALSE
#> 737 737 2 82 FALSE
#> 738 738 16 69 FALSE
#> 739 739 10 75 FALSE
#> 740 740 9 76 FALSE
#> 741 741 5 80 FALSE
#> 742 742 4 81 FALSE
#> 743 743 3 82 FALSE
#> 744 744 2 83 FALSE
#> 745 745 16 70 FALSE
#> 746 746 11 75 FALSE
#> 747 747 9 77 FALSE
#> 748 748 7 79 FALSE
#> 749 749 6 80 FALSE
#> 750 750 5 81 FALSE
#> 751 751 4 82 FALSE
#> 752 752 3 83 FALSE
#> 753 753 2 84 FALSE
#> 754 754 1 85 FALSE
#> 755 755 13 74 FALSE
#> 756 756 8 79 FALSE
#> 757 757 6 81 FALSE
#> 758 758 5 82 FALSE
#> 759 759 4 83 FALSE
#> 760 760 3 84 FALSE
#> 761 761 2 85 FALSE
#> 762 762 1 86 FALSE
#> 763 763 12 76 FALSE
#> 764 764 7 81 FALSE
#> 765 765 6 82 FALSE
#> 766 766 5 83 FALSE
#> 767 767 4 84 FALSE
#> 768 768 3 85 FALSE
#> 769 769 2 86 FALSE
#> 770 770 1 87 FALSE
#> 771 771 9 80 FALSE
#> 772 772 7 82 FALSE
#> 773 773 6 83 FALSE
#> 774 774 5 84 FALSE
#> 775 775 4 85 FALSE
#> 776 776 3 86 FALSE
#> 777 777 2 87 FALSE
#> 778 778 1 88 FALSE
#> 779 779 13 77 FALSE
#> 780 780 12 78 FALSE
#> 781 781 10 80 FALSE
#> 782 782 9 81 FALSE
#> 783 783 7 83 FALSE
#> 784 784 6 84 FALSE
#> 785 785 5 85 FALSE
#> 786 786 4 86 FALSE
#> 787 787 3 87 FALSE
#> 788 788 2 88 FALSE
#> 789 789 1 89 FALSE
#> 790 790 7 84 FALSE
#> 791 791 6 85 FALSE
#> 792 792 5 86 FALSE
#> 793 793 4 87 FALSE
#> 794 794 3 88 FALSE
#> 795 795 2 89 FALSE
#> 796 796 1 90 FALSE
#> 797 797 6 86 FALSE
#> 798 798 5 87 FALSE
#> 799 799 4 88 FALSE
#> 800 800 3 89 FALSE
#> 801 801 2 90 FALSE
#> 802 802 12 81 FALSE
#> 803 803 11 82 FALSE
#> 804 804 10 83 FALSE
#> 805 805 7 86 FALSE
#> 806 806 6 87 FALSE
#> 807 807 5 88 FALSE
#> 808 808 4 89 FALSE
#> 809 809 3 90 FALSE
#> 810 810 2 91 FALSE
#> 811 811 8 86 FALSE
#> 812 812 7 87 FALSE
#> 813 813 5 89 FALSE
#> 814 814 4 90 FALSE
#> 815 815 3 91 FALSE
#> 816 816 2 92 FALSE
#> 817 817 1 93 FALSE
#> 818 818 11 84 FALSE
#> 819 819 8 87 FALSE
#> 820 820 6 89 FALSE
#> 821 821 5 90 FALSE
#> 822 822 4 91 FALSE
#> 823 823 3 92 FALSE
#> 824 824 2 93 FALSE
#> 825 825 11 85 FALSE
#> 826 826 7 89 FALSE
#> 827 827 6 90 FALSE
#> 828 828 5 91 FALSE
#> 829 829 4 92 FALSE
#> 830 830 3 93 FALSE
#> 831 831 2 94 FALSE
#> 832 832 1 95 FALSE
#> 833 833 11 86 FALSE
#> 834 834 9 88 FALSE
#> 835 835 8 89 FALSE
#> 836 836 6 91 FALSE
#> 837 837 5 92 FALSE
#> 838 838 4 93 FALSE
#> 839 839 3 94 FALSE
#> 840 840 2 95 FALSE
#> 841 841 10 88 FALSE
#> 842 842 8 90 FALSE
#> 843 843 7 91 FALSE
#> 844 844 6 92 FALSE
#> 845 845 5 93 FALSE
#> 846 846 4 94 FALSE
#> 847 847 3 95 FALSE
#> 848 848 2 96 FALSE
#> 849 849 10 89 FALSE
#> 850 850 7 92 FALSE
#> 851 851 6 93 FALSE
#> 852 852 5 94 FALSE
#> 853 853 4 95 FALSE
#> 854 854 3 96 FALSE
#> 855 855 2 97 FALSE
#> 856 856 10 90 FALSE
#> 857 857 5 95 FALSE
#> 858 858 4 96 FALSE
#> 859 859 3 97 FALSE
#> 860 860 2 98 FALSE
#> 861 861 1 99 FALSE
#> 862 862 8 93 FALSE
#> 863 863 5 96 FALSE
#> 864 864 4 97 FALSE
#> 865 865 3 98 FALSE
#> 866 866 2 99 FALSE
#> 867 867 1 100 FALSE
#> 868 868 11 91 FALSE
#> 869 869 10 92 FALSE
#> 870 870 7 95 FALSE
#> 871 871 6 96 FALSE
#> 872 872 5 97 FALSE
#> 873 873 4 98 FALSE
#> 874 874 3 99 FALSE
#> 875 875 2 100 FALSE
#> 876 876 1 101 FALSE
#> 877 877 10 93 FALSE
#> 878 878 6 97 FALSE
#> 879 879 5 98 FALSE
#> 880 880 4 99 FALSE
#> 881 881 3 100 FALSE
#> 882 882 2 101 FALSE
#> 883 883 1 102 FALSE
#> 884 884 9 95 FALSE
#> 885 885 5 99 FALSE
#> 886 886 4 100 FALSE
#> 887 887 3 101 FALSE
#> 888 888 2 102 FALSE
#> 889 889 1 103 FALSE
#> 890 890 0 104 FALSE
#> 891 891 12 93 FALSE
#> 892 892 11 94 FALSE
#> 893 893 9 96 FALSE
#> 894 894 8 97 FALSE
#> 895 895 6 99 FALSE
#> 896 896 5 100 FALSE
#> 897 897 4 101 FALSE
#> 898 898 3 102 FALSE
#> 899 899 2 103 FALSE
#> 900 900 9 97 FALSE
#> 901 901 8 98 FALSE
#> 902 902 7 99 FALSE
#> 903 903 5 101 FALSE
#> 904 904 4 102 FALSE
#> 905 905 3 103 FALSE
#> 906 906 2 104 FALSE
#> 907 907 1 105 FALSE
#> 908 908 7 100 FALSE
#> 909 909 6 101 FALSE
#> 910 910 5 102 FALSE
#> 911 911 4 103 FALSE
#> 912 912 3 104 FALSE
#> 913 913 2 105 FALSE
#> 914 914 1 106 FALSE
#> 915 915 9 99 FALSE
#> 916 916 8 100 FALSE
#> 917 917 7 101 FALSE
#> 918 918 6 102 FALSE
#> 919 919 5 103 FALSE
#> 920 920 4 104 FALSE
#> 921 921 3 105 FALSE
#> 922 922 2 106 FALSE
#> 923 923 1 107 FALSE
#> 924 924 7 102 FALSE
#> 925 925 6 103 FALSE
#> 926 926 5 104 FALSE
#> 927 927 4 105 FALSE
#> 928 928 3 106 FALSE
#> 929 929 2 107 FALSE
#> 930 930 1 108 FALSE
#> 931 931 7 103 FALSE
#> 932 932 5 105 FALSE
#> 933 933 4 106 FALSE
#> 934 934 3 107 FALSE
#> 935 935 2 108 FALSE
#> 936 936 1 109 FALSE
#> 937 937 10 101 FALSE
#> 938 938 5 106 FALSE
#> 939 939 4 107 FALSE
#> 940 940 3 108 FALSE
#> 941 941 2 109 FALSE
#> 942 942 1 110 FALSE
#> 943 943 7 105 FALSE
#> 944 944 6 106 FALSE
#> 945 945 5 107 FALSE
#> 946 946 4 108 FALSE
#> 947 947 3 109 FALSE
#> 948 948 2 110 FALSE
#> 949 949 6 107 FALSE
#> 950 950 4 109 FALSE
#> 951 951 3 110 FALSE
#> 952 952 2 111 FALSE
#> 953 953 1 112 FALSE
#> 954 954 11 103 FALSE
#> 955 955 8 106 FALSE
#> 956 956 6 108 FALSE
#> 957 957 5 109 FALSE
#> 958 958 4 110 FALSE
#> 959 959 3 111 FALSE
#> 960 960 2 112 FALSE
#> 961 961 1 113 FALSE
#> 962 962 7 108 FALSE
#> 963 963 6 109 FALSE
#> 964 964 5 110 FALSE
#> 965 965 4 111 FALSE
#> 966 966 3 112 FALSE
#> 967 967 2 113 FALSE
#> 968 968 1 114 FALSE
#> 969 969 6 110 FALSE
#> 970 970 5 111 FALSE
#> 971 971 4 112 FALSE
#> 972 972 3 113 FALSE
#> 973 973 2 114 FALSE
#> 974 974 13 104 FALSE
#> 975 975 8 109 FALSE
#> 976 976 7 110 FALSE
#> 977 977 6 111 FALSE
#> 978 978 5 112 FALSE
#> 979 979 4 113 FALSE
#> 980 980 3 114 FALSE
#> 981 981 2 115 FALSE
#> 982 982 1 116 FALSE
#> 983 983 13 105 FALSE
#> 984 984 12 106 FALSE
#> 985 985 10 108 FALSE
#> 986 986 6 112 FALSE
#> 987 987 5 113 FALSE
#> 988 988 4 114 FALSE
#> 989 989 3 115 FALSE
#> 990 990 2 116 FALSE
#> 991 991 10 109 FALSE
#> 992 992 9 110 FALSE
#> 993 993 8 111 FALSE
#> 994 994 7 112 FALSE
#> 995 995 5 114 FALSE
#> 996 996 4 115 FALSE
#> 997 997 3 116 FALSE
#> 998 998 2 117 FALSE
#> 999 999 1 118 FALSE
#> 1000 1000 13 107 FALSE
#> 1001 1001 9 111 FALSE
#> 1002 1002 8 112 FALSE
#> 1003 1003 5 115 FALSE
#> 1004 1004 4 116 FALSE
#> 1005 1005 3 117 FALSE
#> 1006 1006 2 118 FALSE
#> 1007 1007 1 119 FALSE
#> 1008 1008 8 113 FALSE
#> 1009 1009 5 116 FALSE
#> 1010 1010 4 117 FALSE
#> 1011 1011 3 118 FALSE
#> 1012 1012 2 119 FALSE
#> 1013 1013 1 120 FALSE
#> 1014 1014 8 114 FALSE
#> 1015 1015 4 118 FALSE
#> 1016 1016 3 119 FALSE
#> 1017 1017 2 120 FALSE
#> 1018 1018 1 121 FALSE
#> 1019 1019 10 113 FALSE
#> 1020 1020 8 115 FALSE
#> 1021 1021 7 116 FALSE
#> 1022 1022 6 117 FALSE
#> 1023 1023 4 119 FALSE
#> 1024 1024 3 120 FALSE
#> 1025 1025 2 121 FALSE
#> 1026 1026 1 122 FALSE
#> 1027 1027 10 114 FALSE
#> 1028 1028 9 115 FALSE
#> 1029 1029 5 119 FALSE
#> 1030 1030 4 120 FALSE
#> 1031 1031 3 121 FALSE
#> 1032 1032 2 122 FALSE
#> 1033 1033 8 117 FALSE
#> 1034 1034 6 119 FALSE
#> 1035 1035 5 120 FALSE
#> 1036 1036 4 121 FALSE
#> 1037 1037 3 122 FALSE
#> 1038 1038 2 123 FALSE
#> 1039 1039 1 124 FALSE
#> 1040 1040 9 117 FALSE
#> 1041 1041 4 122 FALSE
#> 1042 1042 3 123 FALSE
#> 1043 1043 2 124 FALSE
#> 1044 1044 1 125 FALSE
#> 1045 1045 11 116 FALSE
#> 1046 1046 9 118 FALSE
#> 1047 1047 8 119 FALSE
#> 1048 1048 7 120 FALSE
#> 1049 1049 5 122 FALSE
#> 1050 1050 4 123 FALSE
#> 1051 1051 3 124 FALSE
#> 1052 1052 2 125 FALSE
#> 1053 1053 1 126 FALSE
#> 1054 1054 10 118 FALSE
#> 1055 1055 7 121 FALSE
#> 1056 1056 6 122 FALSE
#> 1057 1057 5 123 FALSE
#> 1058 1058 4 124 FALSE
#> 1059 1059 3 125 FALSE
#> 1060 1060 2 126 FALSE
#> 1061 1061 1 127 FALSE
#> 1062 1062 6 123 FALSE
#> 1063 1063 5 124 FALSE
#> 1064 1064 4 125 FALSE
#> 1065 1065 3 126 FALSE
#> 1066 1066 2 127 FALSE
#> 1067 1067 1 128 FALSE
#> 1068 1068 10 120 FALSE
#> 1069 1069 8 122 FALSE
#> 1070 1070 6 124 FALSE
#> 1071 1071 5 125 FALSE
#> 1072 1072 4 126 FALSE
#> 1073 1073 3 127 FALSE
#> 1074 1074 2 128 FALSE
#> 1075 1075 1 129 FALSE
#> 1076 1076 8 123 FALSE
#> 1077 1077 7 124 FALSE
#> 1078 1078 5 126 FALSE
#> 1079 1079 4 127 FALSE
#> 1080 1080 3 128 FALSE
#> 1081 1081 2 129 FALSE
#> 1082 1082 6 126 FALSE
#> 1083 1083 5 127 FALSE
#> 1084 1084 4 128 FALSE
#> 1085 1085 3 129 FALSE
#> 1086 1086 12 121 FALSE
#> 1087 1087 8 125 FALSE
#> 1088 1088 6 127 FALSE
#> 1089 1089 5 128 FALSE
#> 1090 1090 4 129 FALSE
#> 1091 1091 3 130 FALSE
#> 1092 1092 2 131 FALSE
#> 1093 1093 1 132 FALSE
#> 1094 1094 5 129 FALSE
#> 1095 1095 4 130 FALSE
#> 1096 1096 3 131 FALSE
#> 1097 1097 2 132 FALSE
#> 1098 1098 1 133 FALSE
#> 1099 1099 16 119 FALSE
#> 1100 1100 9 126 FALSE
#> 1101 1101 8 127 FALSE
#> 1102 1102 7 128 FALSE
#> 1103 1103 6 129 FALSE
#> 1104 1104 5 130 FALSE
#> 1105 1105 4 131 FALSE
#> 1106 1106 3 132 FALSE
#> 1107 1107 2 133 FALSE
#> 1108 1108 1 134 FALSE
#> 1109 1109 8 128 FALSE
#> 1110 1110 7 129 FALSE
#> 1111 1111 5 131 FALSE
#> 1112 1112 4 132 FALSE
#> 1113 1113 3 133 FALSE
#> 1114 1114 2 134 FALSE
#> 1115 1115 1 135 FALSE
#> 1116 1116 13 124 FALSE
#> 1117 1117 12 125 FALSE
#> 1118 1118 9 128 FALSE
#> 1119 1119 7 130 FALSE
#> 1120 1120 6 131 FALSE
#> 1121 1121 5 132 FALSE
#> 1122 1122 4 133 FALSE
#> 1123 1123 3 134 FALSE
#> 1124 1124 2 135 FALSE
#> 1125 1125 12 126 FALSE
#> 1126 1126 8 130 FALSE
#> 1127 1127 6 132 FALSE
#> 1128 1128 5 133 FALSE
#> 1129 1129 4 134 FALSE
#> 1130 1130 3 135 FALSE
#> 1131 1131 2 136 FALSE
#> 1132 1132 12 127 FALSE
#> 1133 1133 8 131 FALSE
#> 1134 1134 7 132 FALSE
#> 1135 1135 6 133 FALSE
#> 1136 1136 5 134 FALSE
#> 1137 1137 4 135 FALSE
#> 1138 1138 3 136 FALSE
#> 1139 1139 2 137 FALSE
#> 1140 1140 6 134 FALSE
#> 1141 1141 5 135 FALSE
#> 1142 1142 4 136 FALSE
#> 1143 1143 3 137 FALSE
#> 1144 1144 2 138 FALSE
#> 1145 1145 7 134 FALSE
#> 1146 1146 6 135 FALSE
#> 1147 1147 5 136 FALSE
#> 1148 1148 4 137 FALSE
#> 1149 1149 3 138 FALSE
#> 1150 1150 2 139 FALSE
#> 1151 1151 5 137 FALSE
#> 1152 1152 4 138 FALSE
#> 1153 1153 3 139 FALSE
#> 1154 1154 2 140 FALSE
#> 1155 1155 6 137 FALSE
#> 1156 1156 5 138 FALSE
#> 1157 1157 4 139 FALSE
#> 1158 1158 3 140 FALSE
#> 1159 1159 2 141 FALSE
#> 1160 1160 1 142 FALSE
#> 1161 1161 6 138 FALSE
#> 1162 1162 5 139 FALSE
#> 1163 1163 4 140 FALSE
#> 1164 1164 3 141 FALSE
#> 1165 1165 2 142 FALSE
#> 1166 1166 6 139 FALSE
#> 1167 1167 4 141 FALSE
#> 1168 1168 3 142 FALSE
#> 1169 1169 2 143 FALSE
#> 1170 1170 6 140 FALSE
#> 1171 1171 5 141 FALSE
#> 1172 1172 4 142 FALSE
#> 1173 1173 3 143 FALSE
#> 1174 1174 2 144 FALSE
#> 1175 1175 5 142 FALSE
#> 1176 1176 4 143 FALSE
#> 1177 1177 3 144 FALSE
#> 1178 1178 2 145 FALSE
#> 1179 1179 5 143 FALSE
#> 1180 1180 4 144 FALSE
#> 1181 1181 3 145 FALSE
#> 1182 1182 2 146 FALSE
#> 1183 1183 6 143 FALSE
#> 1184 1184 5 144 FALSE
#> 1185 1185 4 145 FALSE
#> 1186 1186 3 146 FALSE
#> 1187 1187 2 147 FALSE
#> 1188 1188 1 148 FALSE
#> 1189 1189 6 144 FALSE
#> 1190 1190 4 146 FALSE
#> 1191 1191 3 147 FALSE
#> 1192 1192 2 148 FALSE
#> 1193 1193 6 145 FALSE
#> 1194 1194 5 146 FALSE
#> 1195 1195 4 147 FALSE
#> 1196 1196 3 148 FALSE
#> 1197 1197 4 148 FALSE
#> 1198 1198 3 149 FALSE
#> 1199 1199 2 150 FALSE
#> 1200 1200 6 147 FALSE
#> 1201 1201 5 148 FALSE
#> 1202 1202 4 149 FALSE
#> 1203 1203 2 151 FALSE
#> 1204 1204 6 148 FALSE
#> 1205 1205 5 149 FALSE
#> 1206 1206 4 150 FALSE
#> 1207 1207 3 151 FALSE
#> 1208 1208 5 150 FALSE
#> 1209 1209 4 151 FALSE
#> 1210 1210 3 152 FALSE
#> 1211 1211 2 153 FALSE
#> 1212 1212 4 152 FALSE
#> 1213 1213 3 153 FALSE
#> 1214 1214 2 154 FALSE
#> 1215 1215 4 153 FALSE
#> 1216 1216 3 154 FALSE
#> 1217 1217 3 155 FALSE
#> 1218 1218 2 156 FALSE
#> 1219 1219 1 157 FALSE
#> 1220 1220 5 154 FALSE
#> 1221 1221 4 155 FALSE
#> 1222 1222 3 156 FALSE
#> 1223 1223 2 157 FALSE
#> 1224 1224 1 158 FALSE
#> 1225 1225 4 156 FALSE
#> 1226 1226 3 157 FALSE
#> 1227 1227 1 159 FALSE
#> 1228 1228 4 157 FALSE
#> 1229 1229 3 158 FALSE
#> 1230 1230 2 159 FALSE
#> 1231 1231 6 156 FALSE
#> 1232 1232 4 158 FALSE
#> 1233 1233 2 160 FALSE
#> 1234 1234 4 159 FALSE
#> 1235 1235 4 160 FALSE
#> 1236 1236 5 160 FALSE
#> 1237 1237 6 161 FALSE
#> 1238 1238 6 162 FALSE
Note that by giving the area to be burnt in a negative value when it was generated above we have ensured that the values do not clash with those generated by the cuts which (except potentially when a cut is NA) which will always be positive.
A Dynamic TOPMODEL suitable for use with the dynatop
package can be generated using the create_model
method.
This uses an existing classification to generate the model. The required
model structure is given in the vignettes of dynatop
package and is not described here in details.
Since dynatop
simulations make use of ordered HRUs to
work downslope, a classification which used a distance layer (see
earlier section) which represents the ordered downslope sequencing of
the pixels is recommended.
Even if a distance layer is not used in the classification one must
be given to the create_model
method, so the resulting HRUs
can be ordered.
Currently only the ‘band’ distance metric as used below will produce valid model.
For example, in the case of the division of Swindale by topographic index into 21 classes and the bands directly the resulting model can be generated by
ctch$create_model(file.path(demo_dir,"new_model"),"atb_20_band","band")
Looking at the files within the demo_dir
folder
list.files(demo_dir,pattern="new_model*")
#> [1] "new_model.rds" "new_model.tif"
shows that an addition raster map of the HRUs has been created in
new_model.tif
along with a file new_model.rds
containing a model suitable for dynatop
. The values on the
map correspond to the ìd
column of the hru table in the
dynatop
model.